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ABSTRACT

This thesis presents the development of a new numerical algorithm for statistical in-
ference problems that require sampling from distributions which are intractable. We
propose to develop our sampling algorithm based on a class of Monte Carlo meth-
ods, Approximate Bayesian Computation (ABC), which are specifically designed to
deal with this type of likelihood-free inference. ABC has become a fundamental tool
for the analysis of complex models when the likelihood function is computationally
intractable or challenging to mathematically specify. The central theme of our ap-
proach is to enhance the current ABC algorithms by exploiting the structure of the
mathematical models via derivative information. We introduce Progressive Correc-
tion of Gaussian Components (PCGC) as a computationally efficient algorithm for
generating proposal distributions in our ABC sampler. We demonstrate on two ex-
amples that our new ABC algorithm has an acceptance rate that is one to two orders

of magnitude better than the basic ABC rejection sampling.
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CHAPTER 1

INTRODUCTION

1.1 BAYESIAN COMPUTATION

Bayesian computation is by far the most widely used approach to statistical inverse
problems. It employs probability to represent uncertainty, which enables the use of
powerful tools based on Bayes’ theorem to learn about the values of model parameters
that match observations. Based on Bayes’ theorem, we can easily update the posterior

distribution of model parameter according to the new evidence:

L(DI|0)P(6)

p(0|D) = P(D)

(1.1)

Where 6 is the model parameter; D is the new observed data; P(f) is the prior
distribution; L(D|0) is the likelihood function; P(D) = > P(D;)P(D;|0) is model
evidence; p(#|D) is the posterior distribution.

Therefore, we can obtain the posterior distribution of model parameter when we
have new observed data based on its known prior and likelihood function. Markov
Chain Monte Carlo (MCMC) has become the main computational workhorse in sci-
entific computing for solving this type of statistical inference problems. The core of
MCMC algorithm is the calculation of the acceptance rate, which can only be obtained
when likelihood has a functional form that can be evaluated. Hence the likelihood
needs to be prescribed, which dramatically reduces the freedom to model physical
phenomena and thus the overall utility of the uncertainty quantification exercise is

diminished. Consider the following general model,

d= f(0,¢) (1.2)
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where f(-) is a mathematical model possibly constructed from physics-based princi-
ples, 6 are the uncertain model parameters with a prior distribution given by p(6),
and the nuisance parameters e are distributed according to p(e) and represent the
stochasticity in the model due to modeling errors such as missing physics. When
observation D is available, MCMC algorithms sample the posterior distribution ac-

cording to Bayes’ theorem,
p(01D) o L(D, 0)p(0) (1.3)

where in general L(D,#) is an intractable likelihood function given by the following
integral,

L(D,8) = /p(D|¢9, e)p(e)de . (1.4)

Tractable likelihood functions can only be obtained in special cases when € is not
embedded into the mathematical model - such as additive noise, d = f(6) + ¢, or
multiplicative noise, d = f(6)e. As a result, in general it is challenging to use MCMC
algorithms when the likelihood is computational expensive and/or impossible to cal-

culate.

1.2 APPROXIMATE BAYESIAN COMPUTATION

As discussed above, when the likelihood function is difficult or impossible to evaluate,
researchers turned to likelihood-free methods which are called Approximate Bayesian
computation (ABC). Approximate Bayesian computation[27] is a family of computa-
tional techniques in Bayesian inference that bypass the evaluation of the likelihood
function[3, 22, 31]. It has been successfully used in a wide variety of fields such as
genetics[30, 15], epidemiology|9, 33], population biology[28, 18, 12|, and psychology
[39], where the evaluation of the likelihood function is non-trivial. The basic ABC
algorithm|[34, 27] was introduced as a rejection sampling method, which does not

require the evaluation of the likelihood function. As shown in Algorithm 1, samples
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Algorithm 1 ABC rejection sampling algorithm

ReqUire: Pthreh, Da p(e)a p(E)

1: fori=1to N do

2 repeat
3 Sample (0%, ¢*) ~ p(8)p(e)
4 Simulate data D* using the model: D* = f(6*, ¢*)
5: Calculate discrepancy: p(D*, D)
6
7

until P(D*, D) S Pthresh
Accept 0; + 0*

8: end for

9: return N samples {6;}i—1. n

of 6% and €* are used to generate the simulated data D* using the model in Eq.(1.2).
If the distance p(D, D*) between the observed data D and the simulated data D* is
less than a small positive threshold pipesn, then the proposed candidate is accepted
as a sample drawn from the approximate posterior p(8| p(D, f(0,¢€)) < pthmsh), which
approaches the posterior distribution p(0|D) as pipresn tends to zero. A large pipresn
will yield a higher acceptance rate but a less accurate estimation of the posterior. On
the other hand, a small p;p,..sn, Will provide an accurate estimation of the posterior
at the cost of a low acceptance rate. As a result, it is not computationally feasible
to apply ABC rejection sampling to computational expensive models with non-linear
relationship and high dimensional parameter space. In this thesis, we propose to
take advantage of this fundamental property of ABC algorithms, namely likelihood-
free inference, and have an initial attempt to extend their application to predictive

engineering by exploiting the structure of the model via gradient information.

1.3 MOTIVATION

The application of the basic rejection ABC algorithm to complex model generally
results in extreme low acceptance rates, which limits the use of ABC. To improve
the acceptance rate of the ABC rejection sampling algorithm, a number of advanced

sampling ABC variants have been derived such as ABC Markov Chain Monte Carlo
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(ABC-MCMC), ABC Partial Rejection Control (ABC-PRC), ABC Population Monte
Carlo (ABC-PMC), and ABC Sequential Monte Carlo (ABC-SMC). Marjoram et
al.[22] introduced the ABC-MCMC by embedding the Metropolis-Hastings algorithm
within the ABC. As with any MCMC method, posterior samples generated by ABC-
MCMC are correlated [31], and thus the algorithm is poorly parallelizable [7]. More-
over, convergence is difficult to assess and the samples are prone to get stuck [32]. In
response, Sisson et al. [31] developed the ABC-PRC which perturbs the samples using
a forward kernel and a backward kernel. However, it has been shown in [2] that ABC-
PRC yields a bias in the approximation of the posterior. ABC-PMC was developed
by Beaumon et al.[2] to obtain an unbiased estimation[l]. It requires an adaptive
Gaussian kernel function with a variance determined by the accepted samples in the
previous iteration. The ABC-SMC [38] is derived from a sequential importance sam-
pling algorithm [24] and unlike ABC-PMC the kernel function is non-adaptive and
can be non-Gaussian.

In all of the above methods, the speed to which posterior estimates are obtained
depends on how well one selects the proposal distributions or transition kernels. A
low acceptance rate results in waisted computational effort which is unacceptable
especially in the case when one deals with complex models that are computation-
ally intensive. In this article, we propose an importance sampling approach which
speeds up the finding of the proposal distribution by exploiting the gradient infor-
mation. The approach is inspired by the idea of Progressive Correction of Gaussian
Components(PCGC)[35, 37], which drives the proposal quickly to the high density
regions of the posterior distribution. The method relies on the introduction of an
artificial measurement model, which is used to iteratively move to region of interest
a set of Gaussian components that will ultimately define the proposal distribution.

The proposed ABC-PCGC has three main steps: (1) an initial Gaussian mix-

ture representation of the proposal distribution, (2) the progressive correction of the
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individual Gaussian components, and (3) the construction of the proposal distribu-
tion and importance sampling. First, a finite Gaussian mixture model is constructed
to span the variability of the prior distribution. The mean and variance of each
Gaussian component is then iteratively updated using the linearized artificial mea-
surement model until the effect of the artificial measurement noise on the posterior
distribution of the proposal vanishes. The final proposal distribution is given by the
mixture of the converged Gaussian components. Since we exploit gradient informa-
tion and make better use of observations in constructing the proposal distribution,
our algorithm explores the parametric space more efficiently using a reduce number
of function evaluations, which is currently a major drawback of ABC methods. This
allows us to reach acceptance rates that are two orders of magnitude better than
the basic ABC rejection sampling. Furthermore, since each Gaussian component is

individually updated the algorithm is easily parallelizable by construction.

1.4 THESIS OUTLINES

In chapter 2, I will review several ABC algorithms proposed in the literature and in
chapter 3, the details of the new ABC-PCGC algorithm are presented. In chapter
4, a performance evaluation of the proposed method on two benchmark problems
where we assess the acceptance rate and compare it with the ABC rejection sampling.
Concluding remarks are then followed by a brief discussion on potential advancements

and future work.
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CHAPTER 2

ABC ALGORITHMS

2.1 INTRODUCTION

As discussed in Chapter 1, the ABC basic rejection algorithm generates a single
sample parameter, 6%, from the prior distribution p(f). Combining the model in
Eq.(1.2), 6* is used to produce the simulated data D*. When the difference between
simulated data D* and the observed data D is equal to or sufficiently close to 0, then
we consider 6* as a sample from the posterior distribution. Repeat the above process
until we have a pool of qualified parameter 6*, then we could estimate the posterior
distribution based on the accepted samples. The main obstacle that prevents ABC
basic rejection method to become mainstream is the very low acceptance rate for the

following reasons[21]

1. The relationship between prior distribution and posterior distribution deter-
mines the acceptance rate (computing efficiency). If the prior resembles the
posterior distribution, the acceptance rate is acceptable. Otherwise, the ac-
ceptance rate is very low. Therefore, a proper prior is highly needed. As a
matter of fact, it is almost impossible to get the proper prior before running

the computation.

2. The dimension of parameter space plays an important role of determining the
acceptance rate. If the dimension of the parameter space is low, where only
few parameters in the model are needed to be estimated, then the acceptance

rate.is.reasonable.. However,in the real world, the parameter space is often very
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high. It is of low possibility to obtain all "good" parameters that produce the
'good" simulated data which matches the true observed data. Therefore, the

acceptance rate will be extremely low in practice.

Therefore, it is critical to improve the acceptance rate by introducing new sam-
pling techniques. As briefly discussed in Section 1.2 and 1.3, to improve the unac-
ceptable acceptance rate, a number of advanced sampling methods has been intro-
duced into ABC frame work, such as Markov Chain Monte Carlo(MCMC), Population
Monte Carlo (PMC), and Sequential Monte Carlo(SMC). In this chapter, these ap-
proaches will be described in turn. The Population Monte Carlo (PMC) is considered

as one of the most effective ABC algorithm so far[40].

2.2 ABC anp MCMC

Markov Chain Monte Carlo (MCMC) sampling is a fundamental technique in Bayesian
estimation[16]. MCMC has been embedded within ABC algorithms by researchers
[22] about 20 years ago. MCMC sampling methods also generate the proposal from
the prior distribution, and each iteration let proposed samples be tested by a small
value of tolerance threshold ¢ and a probability «. Therefore, the proposed sam-
ples are approaching high density posterior distribution. The most popular MCMC
sampler is Metropolis-Hastings (MH) approach[6]. Unlike the ABC basic rejection
approach which obtains independent accepted particles from the posterior distribu-
tion, the MCMC-ABC sampler generates a set of dependent accepted samples from
the posterior distribution. In subsequent iterations, the proposed parameter 6* is gen-
erated from proposal distribution ¢(6*|f) and then produce the simulated data D*,

when the distance p(D, D*) < e and then accept the proposal with the probability «,
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otherwise reject it. The probability « for MH is given by

min 1,% if p(D,D*) <e€
a = ( P(ai)qw |91)) ( ) (21)
0 Otherwise

As can be seen in the above equation, when the proposal distribution ¢ is symmetric

Algorithm 2 ABC-MCMC

1: Initialize the proposal with 6,

2: fori=1to N do

3. perturb 0* ~ q(6*6;_1)

Simulate D* with the model: D* = f(6%)

Calculate discrepancy: p(D*, D)

if p(D*, D) < €, accept 0* with probability:

o = min(1, GGG |

7. if 6% is accepted, set 6; = 6*. Otherwise, set 6; = 0,4
8: end for

, then the probability « relies only on the prior distribution and p(D, D*). So, it
is important to choose a proper prior in order to obtain a good acceptance rate.
What is worse, if the proposal distribution ¢(6*|0;_1) is poorly chosen, the MCMC
algorithm may get stuck[40]. For example, when its variance is relative small, the
proposed particle can not be sufficiently perturbed. If a particle is located in a low
probability posterior region, it is hard to move out of the area without introducing
new information. Therefore the MCMC chains are in high danger of getting stuck.
A sufficient small distance threshold, €, is needed in order to filter out most of the
"bad" proposals to obtain a accurate estimated posterior. Therefore, the acceptance
rate of ABC-MCMC can be extremely low when the chain gets stuck. And also,
MCMC chains are challenging to be parallelized[40]. Based on the analysis, we will
not consider ABC-MCMC in this thesis.

2.3 ABC AND PARTICLE FILTERING

Since simple MCMC sampler suffers from trapping candidates and have low accep-

tance rateswednoveto discuss the Sequential Monte Carlo (SMC) methods[13]. Un-
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like the MCMC sampler which draws a candidate 8* one at a time, the SMC works
with a pool of candidates, called particles, simultaneously by using particle filter.
In each iteration, the particle is perturbed and filtered, bringing the particles closer
and closer to the high density posterior region. At the begin of the SMC sampler,
it initializes a pool of N candidates with equal weight from the prior distribution.
Then in subsequent iterations, particles are chosen from the previous pool based on
its performance (weight). A transition kernel (backward and forward) is needed for
perturbing the particles. In practice, the forward and backward transition kernel
are often symmetric or equal, which is designed to simplify the algorithm[31], but
sometimes it is a poor choice[23, 38]. A good kernel not only maintains the original
information of the previous particle but also introduce some new information to the
particle, which can avoid getting stuck . Normally, a Gaussian with 0 mean and o?
variance is a good choice. For example, consider & ~ N'(0,0?) as the kernel, the new
candidate ca be obtained using 6* = 6 + £.

Different SMC samplers can be derived by how sampling weight are assigned
and what kernel is specified. Then the subsequent section will describe three main
SMC samplers: Particle Rejection Control(PRC), Population Monte Carlo(PMC),
and Sequential Monte Carlo(SMC).

Particle Rejection Control sampler

The ABC Partial Rejection Control (ABC-PRC) algorithm was developed by Sisson
et al.[32] as a remedy for the problems associated with ABC-MCMC discussed in the
previous section. The PRC algorithm was the first particle filter algorithm embedded
into ABC framework. Both a forward and backward transition kernel is needed to
be specified in advance. We denote the forward kernel as a density function gs(.|6)
and the backward kernel as ¢,(.|6*). We use the forward transition kernel gs(.|6)

to perturb the original particle 6 to generate new particle #* , and then, with 6* |
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we generate simulated data D* based on its model and compare D* to the observed
data D by computing the distance p(D, D*). If the particle 8* satisfies inspection
(when the distance p(D, D*) is less than some sufficient small value threshold € ),
then consider the particle as a sample from the approximate posterior domain and
calculate the particle a weight which is the probability of being sampled on the
subsequent iteration.If the particle can not pass inspection (if p(D, D*) is greater
than the sufficient small value of threshold € ), the particle is discarded, and repeat
generating new particles 8* from 6 until we obtain a particle that does pass inspection.

The weight w given to the new particle 6*is

_ p(07)a,(016")
p(0)4;(6°16)

This above process is repeated until there consists of N new particles, which

(2.2)

satisfy the requirement that p(D, D*) < e. Up to now, the ABC-PRC is equivalent
to the ABC basic rejection sampler (Algorithm 1) except every particle has a weight.
The main difference is to repeat the above process multiple times. On consequent
iterations we sample particles with probabilities based on their performance evaluated
in the previous iteration. We consider the weighed particles as proposal. These
weights are giving us a chance to reduce the influence of particles from the pool in low-
density regions and increase the number of particles in high-density regions, which will
make the best use of the particles. As a result, it will generate a pool of particle that
represents a sample from the desired estimate of the posterior p(6|p(D, D*) <= ¢),
with a higher efficiency compared to basic ABC rejection algorithm. Secondly, the
weighting scheme reduce the probability of a chain getting stuck in a low probability
region.

However, there are two obstacle that prevent the PRC to become mainstream.
Firstly, the acceptance rate (efficiency) of the sampler relies heavily on the choices of

the two kernels ¢;(6%|6) and ¢,(6]0*) and the prior p(#). It is hard to choose a optimal

10
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transition kernel[23] and proper prior distribution before computation. Secondly, the
ABC-PRC produces biased estimates of the posterior [2] : the distribution estimated
based on the pool of accepted weighted particles does not converge to the true pos-
terior. Beaumont corrected for this bias using a population Monte Carlo sampling

scheme.

Population Monte Carlo sampler

As shown in Algorithm 3, the Population Monte Carlo algorithm was first embedded
into ABC by Cappé et al., in 2004[11]. Unlike ABC-PRC, ABC Population Monte
Carlo (ABC-PMC) sampling employs a different scheme of calculating weights. In
addition, the ABC-PMC algorithm specifies a single adaptive transition kernel ¢(.|0)
that depends on the variance of the accepted particles in the previous iteration, while
both forward and backward transition kernels are required by the ABC-PRC sampler.
Specifically, given the weight w; ;—; for particle 0;;_, on iteration t-1, the new weight

w; ; for particled;; on iteration t is calculated as

p(ei,t)

! Zé\; wj,t—1Q<0j,t—1|9i,t> 01-1) (23)
The variance o2 is computed as
9 N N
Ut2 = N Z(@i’t — Z Qj’t/N)2 = 2VCLT(01:N¢) (24)
i=1 j=1

One common problem with many samplers is how fast we can reach the esti-
mated high density posterior distribution. This speed is determined by the particle
acceptance rate. Poorly selected prior distributions or transition kernels lead to very
low acceptance rates, which further results in a tremendous amount of computation
wasted because it evaluates great amount of particles that have low chance of being
selected.

Firstly, the greatest strength of the ABC-PMC is that it optimizes the accep-

tance probability. by itsweighting approach. This reason is that its weights minimize

11
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the Kullback-Leibler (K-L) distance (also information divergence, information gain,
relative entropy) between the target posterior and the proposal distribution. The
K-L distance is a measurement that indicates the difference between two probability

distribution.The acceptance is maximized by minimizing the K-L distance [2].

Algorithm 3 ABC-PMC

Require: Given Y and assume Y ~ Model(f), tolerance threshold 6 ,and prior dis-
tribution p(#)
1: Iteration t = 1
2: fori=1to N do
3: repeat

4: Sample (6%) ~ ¢(0)

5: Simulate data D* using the model: D* = f(6*)
6: Calculate discrepancy: p(D*, D)

7 until p(D*, D) < Dthresh

8: 91'71 — 0

9: Wi 1 < %

10: end for

11: 07 + 2% Var(G.n1)
12: fort =2 to 7T do
13: fori=1to N do

14: repeat

15: Sample (6*) from previous iteration : (60*) ~ 6,.y with wight w;

16: Perturbe 6* : (6%) ~ N (6%, 07 ;)

17: Simulate data D* from 6** : X ~ Model(6**) Calculate discrepancy:
o(D", D)

18: until p(D*, D) < pipresn

19: 0iq < 07

20: wj,1 4 = (this is weight is un-proper)

21: end for
22: 02« 2% Var(i.n1)
23: end for

Based on above discussion, it is obvious that the ABC-basic rejection, MCMC,
PRC sampler, they all rely on satisfying the condition p(D, D*) < e. Therefore, the
accuracy of the estimated posterior distribution and the acceptance rate (computation
efficiency) is mostly determined by the selection of tolerance threshold e: large value
€ results into inaccurate posterior estimation while small value of € leads to low

acceptance rate.lt-is-a-trade-off between the acceptance rate and the accuracy of the

12
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estimated posterior distribution.

Secondly, another strength of PMC samplers is that it does not rely on a single
tolerance threshold € and then reduce the affect of selection of €. Instead it selects a
series of € values which decrease monotonically from a larger value to some smaller
one. This engage the samples to converge slowly to a smaller feasible final value of e.

Hence, it highly improves the acceptance rate.

Adaptive Population Monte Carlo sampler

As discussed in the above section, the PMC does not rely on a single tolerance
threshold e by using a set of monotonically decreasing €. It allows the samples to
gradually moves to the high density posterior distribution. It is still challenging
to determine how fast should the decreasing of the € be. The selection of proper
sequence of tolerance levels and a proper stopping criterion are becoming critical

problems hindering the ABC-PMC’s application, particularly in complex models[21].

1. A fast decreasing sequence of tolerance results into a fast convergence but a
relatively low acceptance rate in each iteration, while a slow decreasing sequence
of tolerance leads to a reasonable acceptance rate but an relatively low speed of
convergence. It is crucial to weigh the pros and cons of the sequence of tolerance
level. Therefore, preliminary simulation is required to make the decision, which

is impractical or expensive in complex model computation.

2. Although in ABC-PMC, we do not rely on a single tolerance threshold, we ap-
proach the final threshold by degree. If the computation reaches convergence
before the final threshold, it may put us at risk of repeating the rest unnec-
essarily. So, determining a proper stopping criterion to control the process of
computation is of utmost importance. Stopping too early can decrease the ac-

curacy of the estimation, while stopping too late will lead to a large number

13
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of unnecessary computation time. Preliminary analysis is needed to determine

the stop criterion.

To solve the shortcomings of the ABC-PMC algorithm, Lenormand et al. proposed
a self-adaptive PMC algorithm[21]. The adaptive algorithm differs from the ABC-

PMC algorithm of the original in four ways.

1. First, the weighted particles are divided into two portions, 1 ~ N, and N,+1 ~
N based on its weight. In each iteration, we only update the second portion to
make it satisfy the tolerance. Therefore, it not only makes the best use of the

costly simulation, but also keeps the diversity of the particles.

2. Second, the tolerance values are given by the algorithm. It is the distance of
a-quantile particles in the previous step. It is adaptive to choose a proper

threshold based on its previous proposal.

3. Last, the stopping criterion is given by evaluating whether the particles pool
has sufficiently changed during the current step. If there is no sufficient change
in the current particle pool, it is considered that the particles have converged.

Otherwise, we will go to the next iteration to modify the particles.

Sequential Monte Carlo sampler

The Sequential Monte Carlo (SMC) algorithms begin by generating a pool of N
particles by sampling from the prior distribution p(#) and initially have a equal weight.
In the subsequent iterations, particles are chosen randomly from this pool according
to particle weight. In each iteration, a transition kernel is required to modify and

move the particles around in the parameter space. And its weight is computed as

p(ei,t)

2.5
S wse-1q(050-1104) 29

Wyt =

14
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Algorithm 4 Adaptive ABC-PMC

Require: Given « the proportion of particles to keep at each iteration and pgee,, ..

O N NN RN NN KN o e e e e e e e
S A T T s - <R B T LN ol ol

27:
28:

the minimal acceptance rate,

Initialization:
Set N, = |aN|
fori=1to N do
Simulate (6Y) ~ p(6)
Simulate data D* using the model: D* = f(6?)
Calculate discrepancy: p?(D*, D)
Set w) = 1;
end for
Let €; = Q0(a) be the first a-quantile of p(®.
Let {(6;,w;, pi)} = {(07, 0], p))|p} < e1,1 <i < N}
. Calculate of < 2% Var(61.n,1)
: Set Paee=1
: Set t =2
: Iteration t =1
: repeat
fori:=N,+1to N do
Sample (67) ~ 65" with weight w! ™"
Generate (0:7'|0%) ~ N (theta}, o2 ))
Simulate data D* using the model: D* = f(6:1)
Calculate discrepancy: pi ' (D*, D)
w{~! < 1 (this is weight is un-proper)
end for
Pace = N+]Va EkN:NaH |pf_1(D*, D) <e
€ = Qz_l(a)
Let {(0F, i, pi)} = {(0; ", wi ", pf Dlpi ' < e, 1<i <N}
Calculate o7 < 2 x Var(fy.n, 1)
Set t =t+1
until Pace > Pacemin
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The kernel ¢(.|0) is not necessary adaptive and Gaussian distribution, which differs
from the classical PMC. Therefore, the ABC-SMC method is particularly powerful

when the transition kernel in PMC does not have to be Gaussian.

2.4 DISCUSSION

The Basic rejection algorithm hinges on the tolerance threshold ¢, large values of €
results into inaccurate posterior estimation while small values of € need long compu-
tation times due to the high rejection rate. In practice, the basic rejection algorithm
will never be used. With the development of more complex algorithms, many ad-
vanced techniques, such as Markov Chain Monte Carlo, population Monte Carlo,
have been introduced into ABC. However, this kind of techniques still have to handle
how to find an optimal values for the tolerance threshold. In order to overcome the
the trade off caused by the values of ¢, a set of € that decrease monotonically from
a relative larger tolerance value to some small values, which is originated from sim-
ulated annealing. These algorithms were allowed to converge slowly on the posterior

distribution. There are two drawbacks that prevent PMC to become mainstream.

1. It still relies on the € at each iteration. These algorithm still have to throw away
huge amount of population that cannot satisfy the tolerance threshold. Many

samples were wasted.

2. As we know, fast speed of decreasing the e will have less iterations and the
particles are hard to pass the inspection while low speed can make the proposal
easier to pass the inspection but it needs more iterations. So, we do not know

the optimal speed before we run the simulation.

All in all, the PMC methods makes a big improvement to the computation effi-
ciency. However, there are some drawbacks in this framework that limit the further

development in the ABC-PMC, such as the optimal T. Then we start looking for
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new ABC algorithm in other domain. The next chapter will discuss our new ABC

algorithm.
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CHAPTER 3
ABC-PROGRESSICE CORRECTION OF (GAUSSIAN

COMPONENTS ALGORITHM

3.1 INTRODUCTION

ABC approaches can estimate the posterior distribution without the evaluation of the
likelihood function. Therefore ABC has rapidly gained popularity over the last years,
especially for the complex problems in biology [14, 26, 4, 42|, ecology [19], population
genetics [41, 8] and physics [10] where mostly likelihood is intractable. Unfortunately,
it is well known that complex problems will always come with high-dimensional pa-
rameter spaces. When the number of parameter is increased the acceptance rate
declines dramatically because it is required an huge amount of samples to be simu-
lated in order to find a set of parameter values that satisfy the tolerance threshold,
especially when we prefer to obtaining an acceptable level of accuracy for the posterior
estimation. In the worst case, the acceptance rate is low such that the computation
cost is beyond control. This is the well-known problem of "curse of dimensionality"
1, 5].

In the thesis, I present a new ABC algorithm, called ABC-PCGC, which utilize
the idea of Progressive Correction of Gaussian Components as a means of proposal
generation. PCGC [37], which has similarity with simulated annealing and progres-
sive correction used in particle filters [25], is proposed to gradually correct a set of
initial Gaussian components to cover the support of posterior distribution. Extended

Kalman Filter (EKF), is a non-linear Kalman Filter, is the force to correct the Gaus-
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sian components. EKF is the most widely used estimation algorithm for nonlinear
system parameter estimations [20]. EKF is an extremely powerful algorithm that
updates the Gaussian components based on measurement. EKF uses gradient infor-
mation to guide the direction of correction, which can great improve the proposal
update efficiency. In practice, because the EKF updates the Gaussian components
recursively, no additional past measurement is required. Here, I merge the ABC,
PCGC and EKF to improve the ABC computational efficiency. I will describe the

PCGC, EKF and our algorithm in the following sections.

3.2 PROGRESSIVE CORRECTION OF GAUSSIAN COMPONENTS

Terejanu et al. [35] proposed a Gaussian mixture methods to approximate the evo-
lution of a probability density function (pdf) through a nonlinear function with a
reasonable computation cost. A finite sum of Gaussian density functions is used to
approximate the initial state pdf and then the mean and variance are propagated by
linear theory. Each Gaussian density function has a weight which corresponds to the

Gaussian kernel’s importance in the whole mixture. The method has two advantages

1. The Gaussian mixture can be solved efficiently and accurately using convex

optimization solvers, even if the mixture model includes many terms.

2. Tt decouples a complex pdf into sum of Gaussian density functions. As a con-

sequence, it can be easily parallelized.

The Gaussian mixture model has been applied to low and moderate nonlinear sys-
tems such as uncertainty propagation through two-body system and toxic cloud trans-
ported by wind [17, 35, 36].

In this article, we use a Gaussian mixture approximation to the prior pdf and
propose a 'non-intrusive" way of computing a proposal for the posterior pdf. A

progressive correction is designed to update the Gaussian components such that they
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will reach the high density posterior region. We name this algorithm "Progressive
Correction of Gaussian Components" (PCGC) and in the coming section, we apply

the PCGC to ABC algorithms, which is called the ABC-PCGC algorithm.

3.3 ABC-PROGRESSIVE CORRECTION OF GAUSSIAN COMPONENTS ALGORITHM

The overall structure of the proposed ABC-PCGC algorithm is given by the impor-
tance sampling. Given a proposal distribution over both parametric and nuisance
parametric space, q(#, €), weighted samples from the approximate posterior distribu-
tion are obtained using Algorithm 5, which describes the general form of the ABC-
PCGC.

Algorithm 5 ABC-PCGC general form

ReqUire: Pthreh, D

1: Obtain proposal ¢(0,€) using Algorithm 6

2: fori=1to N do

3: repeat

4 Sample (6%, €*) ~ q(0, €)

5 Simulate data D* using the model: D* = f(6*, ")
6: Calculate discrepancy: p(D*, D)
7
8

until P(D*7 D) S Pthresh
Accept 0; < 0*
9:  Calculate weight w; = 2 ((]?;Zi(f; )
10: end for
11: Normalize weights w¥ =

Wi

Zivzl Wi

12: return N weighted samples {w, 0;}i—1.n

In the followings, since we are looking for a joint proposal distribution for sim-

plicity we denote with x the vector with components 6 and e,
r=1[0¢". (3.1)

The basis of the proposed algorithm is the construction of a joint proposal distribution

using the following artificial measurement model,
z=p(D, f(z))+w, (3.2)
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where w is an artificial additive measurement noise, which is normally distributed
with zero mean and o2 variance. Since we are after minimizing the distance p(-), the
sought proposal distribution ¢(x|Z) can be obtain using Bayes’ theorem given the

artificial measurement Z = 0,

q(z|Z) x L(Z,z)q(x), where (3.3)

L(Z,x) = N(Zp(D, f(x)),03) - (3.4)

Here, the initial proposal ¢(z) o p(f)p(e) and N (-) denotes a Gaussian density func-
tion. The posterior proposal ¢(x|Z) will ensure that its marginal ¢(0|2) is positioned
in the high density region of the posterior p(€|D). The posterior proposal overes-
timate the support of the posterior distribution due to the variance of the artificial
noise 02 > 0. Ideally we would like to have o2 = 0, but this will make the newly
posed statistical inverse problem also intractable. Compared with sampling from the
prior distribution, sampling from this proposal will considerably improve the accep-
tance rate of the proposed algorithm. Furthermore, the method is designed to obtain
this proposal with a reduced number of function evaluations.

So far, we have converted a statistical inverse problem with intractable likelihood
into an importance sampling problem where we need to solve another statistical
inverse problem to obtain the posterior proposal. The new statistical inverse problem
has a tractable likelihood. Nonetheless for small measurement variance o2 these
type of problems are numerically challenging as the likelihood function may not be
in the support of the prior proposal. We thus adopt an iterative approach based
on covariance inflation to attain an overlap between likelihood and prior and at a

same time to minimize the effect of the artificial measurement noise on the posterior

2
w,large

proposal. We start out with a larger variance o and decompose the likelihood

into K factors where the variance of each intermediate likelihood decreases with a
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factor > 1,

L(Z,x) o Lg(Z,x)x...x Lo(Z,x) X L1(Z, ) (3.5)
L(z) = (20050, o). (36)

The final proposal distribution, q(z|Z) = qx(x|Z), is obtained iteratively by solving
K inverse problems,

qr(z]|Z) < Li(Z, 2)qr—1(x|Z) , (3.7)

where qo(x, Z) = g(x) and k = 1... K. Note that for 3 = 1, L(Z, x) N(Z;p(D,f(x)), %)
Thus, each additional iteration diminishes the effect of the artificial measurement
noise on the posterior proposal. In the limit, as K — oo the likelihood function
approaches a Dirac delta function.

The procedure to obtain the prior proposal as well as approximating the posterior

proposal is described in the following two sections.

Proposal Initialization

The key idea of constructing the prior proposal is to represent it as a finite sum
of Gaussian density functions such that the mixture mean and covariance matrix
matches the mean and the covariance matrix of the prior distribution. Any other
decomposition scheme can be used to construct the above Gaussian mixture as long
as it matches the support of the prior distribution. We begin by selecting a pool of

M Gaussian components that will define the prior proposal ¢(z) as follows,

1

a(v) = 57 ;N(x;umﬁ) : (3-8)

Given that in this study we use Gaussian distributions as prior distributions, we adopt
the splitting scheme proposed in [43] to approximate the prior Gaussian probabil-
ity density function (pdf), N (x;u,X), with a mixture of two Gaussian components,

N (&5 a2 )y N (Eipias2aa): This is accomplished by splitting the prior pdf along the
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jth eigen-direction as follows.

1
mo= = yAY; (3.9)

1 —
1
Y=Y, = E—ZAJ-VJV;T (3.11)

Here, \; and V; are the jth eigenvalue and eigenvector of ¥ = VDV with V =
Vi -+ V,] and D = diag(Ay,...,\,). To obtain the proposal Gaussian mixture,
we split along all n eigen-directions, which results in M = 2n Gaussian components.
One may also choose to further refine the Gaussian mixture by continue splitting each
Gaussian component. This increases the number of Gaussian components exponen-
tially if performed along all eigen-directions. Once we have the initial M Gaussian
components, we gradually update their mean and covariance as described in the next

section.

Progressive Correction

We are after a proposal distribution that can capture the support of the actual pos-
terior distribution. Given the Gaussian mixture representation of the prior proposal,
our goal is to find an approximate posterior proposal that also has a Gaussian mixture

representation.
1 M
q(x|2) ~ 57 DN (@, 5F) (3.12)
i=1

In this section, we propose to iteratively update the means and covariances of the ini-
tial Gaussian components. We take advantage of the gradient information of the
distance function in Eq.(3.2), to obtain the approximate means and covariances
of the Gaussian components that approximate the intermediate posteriors gi(z|Z2)

in Eq.(3.7). This update resembles the measurement update step in the extended
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Kalman filter.

T A CHV A () (3.13)
o= Dt -Grpfinrt (3.14)
- Op(D, f(x))
Pz'k 1 _ o (315)
x:uf_l
o? -t
GF = SR | PR R 4 T (3.10

Since we only have to provide an approximation of the posterior proposal we relax
the condition to update also the weights of the Gaussian components. Since the
means and covariances of the Gaussian components define the support of the posterior
proposal, we choose not to change the weights in the mixture. By keeping them
constant, we can independently update the individual Gaussian components resulting
in an easily paralellizable algorithm.

The final set of Gaussian components, obtained by iterating the progressive cor-
rection, is concentrated on the high density posterior distribution. Their equally
weighted mixture gives the posterior proposal in Eq.(3.12) which is used for impor-
tance sampling as described in Algorithm 5.

Note that the PCGC algorithm relies on four parameters, namely aﬁj,lwge, B, M,
and X, which determine its performance. Since the scope of the current paper is just
to introduce the proposed algorithm and have initial feasibility studies, future work

is planned on characterizing the optimal values of the PCGC parameters.

The PCGC step is summarized in Algorithm 6.

3.4 CONCLUSION

In this chapter, we describe how ABC-PCGC works. In general, for this algorithm,

we have two steps
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Algorithm 6 Progressive Correction of Gaussian Components

Require: p(z) = 7(0)n(e) - prior distribution
M - number of Gaussian components
D - observed data
[ - speed factor
Oi,lav'ge - initial artificial noise variance
K - maximum number of correction

1: Proposal initialization: e.g. Eqs.(3.9)-(3.11)
2 q(r) = 57 it N (w34, 57)

3: Update the Gaussian components:
4: fort=1to M do
5. for k=1to K do

6: Jacobian matrix:
k—1 _ 9p(D,f(x))
Pi - ox 1
T=p,
7 Intermgdiate noise variance:
R — Uw,large
k 5k—1
8: Kalman gain:

-1

Gf = SR RS P 4

9: Update the mean (noting that Z = 0):
i =i = GEF(ui )
10: Update the covariance:

Yk = yk-l _ gk pk-lyk-1
11:  end for
12: end for

13: return proposal ¢(z|2) ~ L M N (z; ulf, TK)

1. PCGC step-generating the proposal: We approximate the prior distribution
by a finite sum of Gaussian components. Then progressively update its mean,
variance to cover the support of the posterior distribution. The update process
is driven by the Extended Kalman Filter, which uses the gradient information
to guide the direction of particle movement. This iterative procedures will make
the Gaussian components reach an high density posterior distribution. We call
the updated Gaussian components as proposal, which will be used in the next

step.
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2. ABC step-approximating the posterior: After we have the proposal, we could
put any other ABC algorithms on the top of this proposal. For previous ABC al-
gorithm, they start the approximation from the initial prior distribution. Here,
the same ABC algorithms start simulating the posterior based on the proposal
generated in the above step, which will greatly improve the computing efficiency

and bear the same accuracy.

In the next chapter, we will evaluate the performance of the proposed ABC-PCGC

algorithm by some examples.
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CHAPTER 4

SIMULATION

In the followings we compare the acceptance rate of ABC-PCGC described in Al-
gorithm 5, against the acceptance rate of the basic ABC rejection sampling, see
Algorithm 1. The evaluation is carried on two benchmark problems and simple ap-
plication: (1) a simple linear function for which we can analytically compute the
posterior distribution, (2) 1-dimensional toxin wind transportation problem, and (3)

2-dimensional toxin wind transportation problem.

4.1 LINEAR MODEL

Consider the following linear model with additive noise:
d= f(f,e) =0+¢ (4.1)

We observe data d = 4 and the prior distribution of x = [0 €|7 is given as follows:

p(w)=N<x; [o 0], (1) (1) ) (4.2)

2

We are starting out with T large

= 100 and the distance function is given by

p(d*,d) = (d" — d)’ (4.3)

2

The initial variance is set to 0, 4,0

= Kpinresn and the distance function is given
by p(d*,d) = (d* — d)?. We initialize 4 Gaussian components by splitting the prior
distribution according to Eqgs.(3.9)-(3.11). We then progressively update the Gaussian

-------- i oradient information of the distance function. As we can see
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Figure 4.1: Linear example: ABC-PCGC with pyresn = 0.01 and M = 4, k=1
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Figure 4.2: Linear example: ABC-PCGC with pspresn, = 0.01 and M = 4, k=100
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Figure 4.3: Linear example: ABC-PCGC with pesn = 0.01 and M = 4, k=1000
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in Fig. 4.1, 4.2, 4.7, the proposal is gradually moved from the prior distribution
to the high density region of the posterior distribution. For this example we have
used a variance decreasing factor § = 1. The final posterior distribution of the
proposal is given by the mixture of the converged Gaussian components and used to
generate candidate samples as described in ABC-PCGC algorithm. We then inspect
this population based on p(D*, D) < pipresn as described in Algorithm 5.

We also use ABC rejection algorithm, by directly sampling from the prior dis-
tribution and inspect the samples by using the same threshold. Compared with the
basic ABC rejection algorithm which directly sample from the prior, the acceptance
rate of the population sampled from the proposal generated by the PCGC is increased

by an order of magnitude - as shown in Table 4.1.

Table 4.1: Linear model - Acceptance Rate

Pthresh 1 0.1 0.01

ABC-Rejection | 0.016 | 0.003 | 0.001

ABC-PCGC 0.296 | 0.051 | 0.006

K (ABC-PCGC) | 100 | 1000 | 10000

4.2 1D PUFF-BASED DISPERSION MODEL

In this section, we apply the ABC-PCGC algorithm on a 1D puff-based dispersion
model, whose bimodal posterior cannot be analytically specified. Given c¢(t, x5), the
concentration reading at time ¢, of a sensor located at x,, the goal is to obtain the
posterior distribution of the release location x( in the presence of an uncertain wind

vector w.

m
———————exp | —
2 (tpw)2d ¥ ( 2 ptpw)X

1 tew — 15)?
clty. ) = ot~ )
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Figure 4.4: 1d Puff Source location: ABC-Rejection with piresn = 1

Here, p = 0.8, ¢ = 0.8 are Karlsruhe-Jiilich diffusion coefficient which are deter-
mined by the weather conditions [29]. The mass release is given by m = 1000g and
the distribution of the wind speed is assumed normal with a mean of 10m/s and a
standard deviation of 1m/s. The wind blows from right to left and the true release lo-
cation is assumed to be at 2m. The wind speed used to generate the synthetic data is
set to 10m/s and the measurement time is given by ¢, = 1s. Given the concentration
of the sensor located at x;, = Om and the wind distribution, we apply ABC-PCGC to
infer the original source location. The prior distribution of source location and the

initial artificial noise variance is given as follows:

p(xg) ~ N <x0; 0, 1000) (4.5)

2

The initial variance is set to 0y, 14,4

= Kpuresn and the distance function is given
by p(c,c*) = (c — ¢*)? where ¢* is the simulated concentration. As in the previous
example [ = 1.

First, ABC-basic rejection algorithm is applied to obtain samples from the poste-
rior distribution, see Fig. 4.4. The estimated posterior is a bimodal distribution and

has asymmetric modes due to the wind uncertainty that appears in the denominator

terms in Eq. (4.4).
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Figure 4.6: 1d Puff Source location: ABC-PCGC with pipresn = 1 k=100
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Figure 4.7: 1d Puff Source location: ABC-PCGC with pypresn = 1, k=1000
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Next, we apply the ABC-PCGC algorithm to update the initial prior distribution.
Based on the same splitting scheme given in Section 3.3 we obtain 4 Gaussian compo-
nents to approximate the initial prior distribution of source location. As can be seen
from Fig. 4.5, 4.6 the proposal is moving to the target posterior region and the final
samples from the posterior are presented in Fig. 4.7. We repeat the simulation with
different threshold values and compare the acceptance rate between the ABC-basic

rejection and ABC Basic rejection with PCGC, see Table 4.3.

Table 4.2: 1d Puff model - Acceptance Rate

Pthresh 100 10 1

ABC-Rejection | 0.06 | 0.02 | 0.006

ABC-PCGC 0.70 | 0.46 | 0.1

K (ABC-PCGC) | 100 | 1000 | 10000

The ABC-PCGC has one to two orders of magnitude higher acceptance rate than

acceptance rate of the ABC basic rejection algorithm.

4.3 2D PUFF-BASED DISPERSION MODEL

In this section, we extend the 1D puff-based model to 2D model. The concentration
c(ty, zs) is given in equation 4.4. The only difference is that we have 2-dimensional
space for the puff location and wind condition. The rest parameter will keep the
same. p = 0.8, ¢ = 0.8. The mass release is given by m = 1000g, the distribution
of the wind speed is assumed normal with a mean of 2m/s and a standard deviation
of 0.1m/s, and the wind distribution of wind direction is assumed normal with a
mean 7 and a stand deviation of 0.017. The true release location is assumed to be

at 5 = (2,2) and the measurement time is given by ¢, = 1s. The sensor location is

given at z, = (0,0). We apply ABC-PCGC to infer the original source location. The
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Figure 4.8: 2d Puff Source location: ABC-Basic Rejection with pyppesn = 10

prior distribution of the source location is given as follows:

1000 0O ) (46)

p(z) = N(x;

0 0] 5
0 1000

2

wlarge = K pipresn, and the distance function is given by

The initial variance is set to o
p(c, c*)? where ¢* is the simulated concentration. As in the previous example 3 = 1.

First, ABC-basic rejection algorithm is applied to obtain samples from the pos-
terior distribution, see Fig. 4.8. The estimated posterior is a circular ring shape
distribution.

Next, we apply the ABC-PCGC algorithm to update the initial prior distribution.
Based on the same splitting scheme given in Section 3.3, since the dimensionality of
the source of the joint between source location and wind uncertainty is four dimen-
sional, this Gaussian is approximated using 8 Gaussian components by splitting along
all directions. First, we split the initial prior into 8 sub-Gaussian distribution and
again split each sub-Gaussian components into another 8 components, then we obtain
64 Gaussian components to approximate the initial prior distribution of source loca-

tion. As can be seen from Figure 4.9, the PCGC estimated posterior distribution can

only. cover.partial solution of the ABC basic rejection. Next, we increase to use 521
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Figure 4.10: 2d Puff Source location: ABC-PCGC with ppresn = 10, M=512

Gaussian components to represent the initial prior, the comparison can be seen from
Figure 4.10. We repeat the simulation with different threshold values and compare
the acceptance rate between the ABC-basic rejection and ABC Basic rejection with
PCGC, see Table 4.3. The ABC-PCGC has one order of magnitude higher acceptance
rate than acceptance rate of the ABC basic rejection algorithm. And the acceptance
rate of PCGC with 512 Gaussian components is lower than the acceptance rate of

PCGC with 64 Gaussian components, while high number of Gaussian components
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simulation has a better estimation, see Fig. 4.9,4.10.

Table 4.3: 2d Puff model: Acceptance Rate

Pthresh 100 10 1

ABC-Rejection 0.04 | 0.01 | 0.004

ABC-PCGC M=64 | 0.22 | 0.16 | 0.029

ABC-PCGC M=512 | 0.11 | 0.09 | 0.019

K (ABC-PCGC) 100 | 1000 | 10000

35
www.manharaa.com




CHAPTER 5

CONCLUSION AND FUTURE WORKS

5.1 CONCLUSION

Compared to the traditional Monte Carlo sampling, a new sampling algorithm is
proposed to solve statistical inverse problems with intractable likelihood functions.
The main contributions in the construction of the ABC-PCGC is the use of gradient
information to construct proposal distributions that are constrained by the data using
a reduce number of function evaluations. Hence, the new sampling strategy makes
better use of observations, which is currently a major drawback of ABC methods.

The other contribution of the thesis is summarized as follows:

1. Instead of directly sampling from the prior distribution, we constructed a joint
proposal distribution by introducing artificial noise. We convert a statistical
inverse problem with intractable likelihood into an importance sampling prob-

lem. Sampling from this proposal will considerably improve the acceptance rate

of the ABC-PCGC.

2. We approximate the prior with a finite sum of Gaussian density functions such
that the mixture mean and covariance matrix matches the mean and covariance

matrix of the prior distribution.

3. Once we obtain the prior proposal, then we could independently update each
Gaussian components by iterating the progressive correction. Then the algo-

rithm can be easily parallelized.
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The preliminary numerical results provide evidence that the performance of the pro-

posed algorithm is superior to the ABC rejection sampling.

5.2 FUTURE WORKS

However, more work needs to be done to asses its performance on additional bench-
mark problems as well as comparison with more advanced ABC algorithms. Future
studies are also planned to characterized the parameterization of the proposed ABC-

PCGC algorithm.

1. The PCGC algorithm relies on four parameters, namely aﬁ,’large, B, M, and ¥,
which determine its performance. Since the scope of the current thesis is just
to introduce the proposed algorithm and have initial feasibility studies, future

work is planned on characterizing the optimal values of the PCGC parameters.

2. Other prior approximation method can be used to refine or improve the prior

proposal initialization.

3. The new PCGC algorithm should be applied into more complex real-world

problem to test its performance.

Even though there is a lot of further research is needed, we develop a relative new

idea of sampling in ABC framework.
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